Moving Oil Rig Baronia at Ulsan, Korea

Description
On May 2017 the 17,000 ton weighing oil rig was shifted to load on bord of a barge and eventually put into operation in the Gulf of Thailand.

Hebetec Engineering Ltd was fully responsible for shifting works.

For the loading the oil rig was moved with strand jacks and sliding shoes with teflon inlays.

Facts
Weight: 17’000 t
Moving distance: 120 m

Handling equipment
Strand jack F-1000: 4 pcs
Moving Oil Rig Bergading at Ulsan, Korea

Description

On March 2017 the 24'000 ton weighing oil rig Bergading was shifted to load on bord of a barge and eventually put into operation in the Gulf of Thailand.

Hebetec Engineering Ltd was fully responsible for shifting works.

For the loading the oil rig was moved with strand jacks and sliding shoes with teflon inlays.

Facts

- Weight: 24'000 t
- Moving distance: 120 m

Handling equipment

- Strand jack F-1000: 6 pcs
Moving of an Oil Rig at Bongkot, Thailand

Description

On July 2011 the 23,600 ton weighing oil rig was shifted to load on board of a barge and eventually put into operation in the Gulf of Thailand.

Hebetec Engineering Ltd was fully responsible for shifting works.

For the loading the oil rig was moved with strand jacks and sliding shoes with teflon inlays.

Facts

- Weight: 23,600 t
- Moving distance: 90 m

Handling equipment

- Strand jack H-600: 8 pcs
Moving of DSO Meren (GGCP) Topside & LSF, Korea

Description
In 2014 the DSO Meren topside was moved for load out. Hebetec Engineering Ltd. provided the equipment for this load out action.

The 4 strand jacks with a total pulling capacity of 2'400t were operated by a centralized control system.

The topside has been moved onto a barge, operated by Cosco.

Facts
- Weight (LSF 600t): 7'750 t
- Moving distance: 90 m

Handling equipment
- Strand jack H600: 4 pcs
Installation of an Oil Platform in Malaysia

Description
The M.O.A.B. is a platform, which installs itself at the site of operation without additional auxiliary means like floating cranes. The platform is equipped with the there to required strandjacks on shore.

The legs held by two HA-140 strand jacks are inserted after platform load out. Strand jacks installed upside-down at all platform corners are anchored to the heads of the legs.

Following the transport to the site of operation, the platform is positioned exactly above the substructure on the ocean floor. The legs are lowered with lowering strand jacks HA-140, until they float. By flooding the legs are inserted into the substructure. As soon as all four of them are in position, the platform is lifted. After lifting, one strand connection after the other is disassembled and replaced by the definitive suspension (Superbolt).

Overdick and partners together with HEBETEC Engineering Ltd. developed a cost-effective alternative to conventional platform assembly and successfully utilized it in the China Sea.

Facts
- Maximum Weight: 3'600 t
- Weight of the platform: 2'200 t
- Weight of the legs: 100 t
- Lifting distance of the platform: 12 m
- Lowering distance of the legs: 20 m

Handling equipment
- Stand jacks H-400: 12 Stk
- Stand jacks HA-140: 8 Stk
- Central computer control system
Moving of the Platform NR2, Korea

Description

In 2011 the offshore gas production within the largest gas filed in Australia’s North West was expanded.

For this purpose a platform, weighing 32'000 tons, was built in South Korea by Hyundai Heavy Industries company.

High precision work was required to shift the platform over 200 meters distance. By applying 208 pieces of APS-250 modules with a total capacity of 52'000 tons Hebetec Engineering Ltd. mastered this assignment reliably and free of troubles.

6 Push-Pull units with a pushing capacity of 960 tons moved the colossus onto world largest barge.

Facts

- Weight: 32'000 t
- Moving distance: 200 m

Handling equipment

- APS-250: 208 pcs
- Push-Pull Unit PPU-160: 6 pcs
Moving of 50 Oil Tanker by Air-Pad-Sliding System (Korea)

Description

In 2004 in Korea as a world’s first an oil tanker was built on shore without using dry-dock.

By means of the newly developed APS (Air-Pad-Sliding System) HEBETEC Engineering Ltd. Successfully moved the tanker onto a barge.

In succession until 2008 a further 49 vessels were built and transported in the same manner using the APS system.

Facts

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, width, height:</td>
<td>244, 42, 32 m</td>
</tr>
<tr>
<td>Weight:</td>
<td>22'000 t</td>
</tr>
<tr>
<td>Moving distance:</td>
<td>91 m</td>
</tr>
<tr>
<td>Total lifting capacity:</td>
<td>35'690 t</td>
</tr>
<tr>
<td>Maximum friction:</td>
<td>0.5 %</td>
</tr>
</tbody>
</table>

Handling equipment

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-Pad Sliding Module APS-250:</td>
<td>140 pcs</td>
</tr>
<tr>
<td>Push-Pull unit:</td>
<td>4 pcs</td>
</tr>
<tr>
<td>Hydraulic aggregate PA4-16:</td>
<td>4 pcs</td>
</tr>
</tbody>
</table>
Load-Out of 22 Ships Tsuji, Korea

Description
Instead of just constructing vessel segments Tsuji Heavy Ind. decided to build entire vessels.

Hebetec Engineering Ltd. moved 22 vessels from production areas to load onto barges by using APS (Air Pad Sliding System).

Transvers movement of 30m were followed by longitudinal sliding over up to 500m distance. The APS modules being installed in mobile cradles were applied at two production areas.

Facts
Vessel length, -width, -height: 170, 28, 16 m
Weight: 2’500-8’600 t
Moving transverse: 30 m
Moving longitudinal: 150-500 m

Handling Equipment
APS M-385: 32 pcs
Push-Pull unit PPU-32: 8 pcs